首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4974篇
  免费   447篇
  国内免费   297篇
  2023年   37篇
  2022年   45篇
  2021年   165篇
  2020年   138篇
  2019年   153篇
  2018年   203篇
  2017年   143篇
  2016年   231篇
  2015年   333篇
  2014年   375篇
  2013年   357篇
  2012年   504篇
  2011年   397篇
  2010年   273篇
  2009年   250篇
  2008年   282篇
  2007年   279篇
  2006年   273篇
  2005年   228篇
  2004年   208篇
  2003年   188篇
  2002年   144篇
  2001年   70篇
  2000年   50篇
  1999年   62篇
  1998年   25篇
  1997年   31篇
  1996年   25篇
  1995年   25篇
  1994年   27篇
  1993年   17篇
  1992年   19篇
  1991年   20篇
  1990年   17篇
  1989年   11篇
  1988年   13篇
  1987年   12篇
  1986年   11篇
  1985年   12篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   6篇
  1976年   5篇
  1973年   4篇
  1971年   4篇
  1969年   2篇
  1967年   2篇
排序方式: 共有5718条查询结果,搜索用时 73 毫秒
51.
The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.  相似文献   
52.
High‐capacity Li‐rich layered oxide cathodes along with Si‐incorporated graphite anodes have high reversible capacity, outperforming the electrode materials used in existing commercial products. Hence, they are potential candidates for the development of high‐energy‐density lithium‐ion batteries (LIBs). However, structural degradation induced by loss of interfacial stability is a roadblock to their practical use. Here, the use of malonic acid‐decorated fullerene (MA‐C60) with superoxide dismutase activity and water scavenging capability as an electrolyte additive to overcome the structural instability of high‐capacity electrodes that hampers the battery quality is reported. Deactivation of PF5 by water scavenging leads to the long‐term stability of the interfacial structures of electrodes. Moreover, an MA‐C60‐added electrolyte deactivates the reactive oxygen species and constructs an electrochemically robust cathode‐electrolyte interface for Li‐rich cathodes. This work paves the way for new possibilities in the design of electrolyte additives by eliminating undesirable reactive substances and tuning the interfacial structures of high‐capacity electrodes in LIBs.  相似文献   
53.
Despite their exceptionally high capacity, overlithiated layered oxides (OLO) have not yet been practically used in lithium‐ion battery cathodes due to necessary toxic/complex chemical activation processes and unsatisfactory electrochemical reliability. Here, a new class of ecofriendly chemical activation strategy based on amphiphilic deoxyribose nucleic acid (DNA)‐wrapped multiwalled carbon nanotubes (MWCNT) is demonstrated. Hydrophobic aromatic bases of DNA have a good affinity for MWCNT via noncovalent π–π stacking interactions, resulting in core (MWCNT)‐shell (DNA) hybrids (i.e., DNA@MWCNT) featuring the predominant presence of hydrophilic phosphate groups (coupled with Na+) in their outmost layers. Such spatially rearranged Na+–phosphate complexes of the DNA@MWCNT efficiently extract Li+ from monoclinic Li2MnO3 of the OLO through cation exchange reaction of Na+–Li+, thereby forming Li4Mn5O12‐type spinel nanolayers on the OLO surface. The newly formed spinel nanolayers play a crucial role in improving the structural stability of the OLO and suppressing interfacial side reactions with liquid electrolytes, eventually providing significant improvements in the charge/discharge kinetics, cyclability, and thermal stability. This beneficial effect of the DNA@MWCNT‐mediated chemical activation is comprehensively elucidated by an in‐depth structural/electrochemical characterization.  相似文献   
54.
In this progress report, recent improvements to the room temperaturesyntheses of lead halide perovskite nanocrystals (APbX3, X = Cl, Br, I) are assessed, focusing on various aspects which influence the commercial viability of the technology. Perovskite nanocrystals can be prepared easily from low‐cost precursors under ambient conditions, yet they have displayed near‐unity photoluminescence quantum yield with narrow, highly tunable emission peaks. In addition to their impressive ambipolar charge carrier mobilities, these properties make lead halide perovskite nanocrystals very attractive for light‐emitting diode (LED) applications. However, there are still many practical hurdles preventing commercialization. Recent developments in room temperature synthesis and purification protocols are reviewed, closely evaluating the suitability of particular techniques for industry. This is followed by an assessment of the wide range of ligands deployed on perovskite nanocrystal surfaces, analyzing their impact on colloidal stability, as well as LED efficiency. Based on these observations, a perspective on important future research directions that can expedite the industrial adoption of perovskite nanocrystals is provided.  相似文献   
55.
The development of Pt‐free catalysts for the alkaline hydrogen evolution reaction (HER), which is widely used in industrial scale water‐alkali electrolyzers, remains a contemporary and pressing challenge. Ruthenium (Ru) has excellent water‐dissociation abilities and could be an alternative water splitting catalyst. However, its large hydrogen binding energy limits HER activity. Here, a new approach is proposed to boost the HER activity of Ru through uniform loading of Ru nanoparticles on triazine‐ring (C3N3)‐doped carbon (triNC). The composite (Ru/triNC) exhibits outstanding HER activity with an ultralow overpotential of ≈2 mV at 10 mA cm?2; thereby making it the best performing electrocatalyst hitherto reported for alkaline HER. The calculated metal mass activity of Ru/triNC is >10 and 15 times higher than that of Pt/C and Pt/triNC. Both theoretical and experimental studies reveal that the triazine‐ring is a good match for Ru to weaken the hydrogen binding on Ru through interfacial charge transfer via increased contact electrification. Therefore, Ru/triNC can provide the optimal hydrogen adsorption free energy (approaching zero), while maintaining the strong water‐dissociation activity. This study provides a new avenue for designing highly efficient and stable electrocatalysts for water splitting.  相似文献   
56.
Zeng  Weimin  Li  Fang  Wu  Chenchen  Yu  Runlan  Wu  Xueling  Shen  Li  Liu  Yuandong  Qiu  Guanzhou  Li  Jiaokun 《Bioprocess and biosystems engineering》2020,43(1):153-167

Heavy metal resistant bacteria are of great interest because of their potential use in bioremediation. Understanding the survival and adaptive strategies of these bacteria under heavy metal stress is important for better utilization of these bacteria in remediation. The objective of this study was to investigate the role of bacterial extracellular polymeric substance (EPS) in detoxifying against different heavy metals in Bacillus sp. S3, a new hyper antimony-oxidizing bacterium previously isolated from contaminated mine soils. The results showed that Bacillus sp. S3 is a multi-metal resistant bacterial strain, especially to Sb(III), Cu(II) and Cr(VI). Toxic Cd(II), Cr(VI) and Cu(II) could stimulate the secretion of EPS in Bacillus sp. S3, significantly enhancing the adsorption and detoxification capacity of heavy metals. Both Fourier transform infrared spectroscopy (FTIR) and three-dimensional excitation–emission matrix (3D-EEM) analysis further confirmed that proteins were the main compounds of EPS for metal binding. In contrast, the EPS production was not induced under Sb(III) stress. Furthermore, the TEM–EDX micrograph showed that Bacillus sp. S3 strain preferentially transported the Sb(III) to the inside of the cell rather than adsorbed it on the extracellular surface, indicating intracellular detoxification rather than extracellular EPS precipitation played an important role in microbial resistance towards Sb(III). Together, our study suggests that the toxicity response of EPS to heavy metals is associated with difference in EPS properties, metal types and corresponding environmental conditions, which is likely to contribute to microbial-mediated remediation.

  相似文献   
57.
58.
Prostate cancer is the most common cancer among men beyond 50 years old, and ranked the second in mortality. The level of Prostate-specific antigen (PSA) in serum has been a routine biomarker for clinical assessment of the cancer development, which is detected mostly by antibody-based immunoassays. The proteolytic activity of PSA also has important functions. Here a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) technology was developed to measure PSA activity. In vitro assay showed that the biosensor containing a substrate peptide ‘RLSSYYSGAG’ had 400% FRET change in response to 1 µg/ml PSA within 90 min, and could detect PSA activity at 25 ng/ml. PSA didn’t show enzymatic activity toward the biosensor in serum solution, likely reflecting the existence of other inhibitory factors besides Zn2+. By expressing the biosensor on cell plasma membrane, the FRET responses were significant, but couldn’t distinguish well the cultured prostate cancer cells from non-prostate cancer cells under microscopy imaging, indicating insufficient speci- ficity to PSA. The biosensor with the previously known ‘HSSKLQ’ substrate showed little response to PSA in solution. In summary, we developed a genetically encoded FRET biosensor to detect PSA activity, which may serve as a useful tool for relevant applications, such as screening PSA activation substrates or inhibitors; the purified biosensor protein can also be an alternative choice for measuring PSA activity besides currently commercialized Mu-HSSKLQ-AMC substrate from chemical synthesis.  相似文献   
59.
60.

Propagation of gametophytes and sporophytes using mechanical fragmentation has been considered a suitable method for mass production of ferns. This study aimed to develop a practical propagation method for Lemmaphyllum microphyllum C. Presl, which is a fern of significant ornamental and medicinal value. Gametophytes were obtained through in vitro spore germination and used for propagation experiments. The gametophyte was mechanically fragmented using a scalpel into small fragments, which were then used to investigate gametophyte proliferation. In addition, the gametophyte was fragmented using a blender and then used to study sporophyte formation. Optimal proliferation conditions of the gametophyte were determined using Murashige and Skoog (MS) basal medium (double-, full-, half-, quarter-strength), Knop medium, and medium components (sucrose, nitrogen sources, activated charcoal), at various concentrations. The fresh weight of the gametophyte was 14-fold higher than that of gametophytes (300 mg) used as culture material, when cultured on double-strength MS. Moreover, 1 g of the gametophyte fragmented in 25 mL of distilled water formed more than 430 sporophytes in a soil mixture in an area of 7.5 cm2. The sporophytes were successfully cultivated in the greenhouse after acclimation. A large-scale production method for L. microphyllum that can be easily implemented in a fern production farm is outlined.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号